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Self-similar analytical nonlinear solutions to the hydrostatic Boussinesq equations
are derived which describe unbalanced inertial pulsations of anticyclonic lens-like
circular vortices in stably stratified rotating fluid. Any steady axisymmetric solution
for a finite-volume anticyclonic vortex in the reduced-gravity approximation is shown
to correspond to a set of time-periodic solutions with the amplitude of pulsations
being within a range limited by the intensity of the stationary vortex. These solutions
represent an extension of previous reduced-gravity analytical pulson solutions of
particular forms with spatially uniform divergence of horizontal velocity oscillating in
time within the vortex volume. In the self-similar form the pulson solution describes
the expansion and contraction of a vortex which maintains the same spatial structure
in the Lagrangian coordinates.

1. Introduction
Hydrostatic, stratified Boussinesq primitive equations (PE) are widely used for

modelling large- and mesoscale variability in planetary atmospheres and oceans.
However, exact non-stationary solutions for the PE are limited. Some analytic
solutions have been found for finite-area lens-like vortices in the reduced-gravity
shallow water formulation. One family of so-called rodon and pulson solutions is
described by a set of ordinary differential equations when velocities are assumed to
be linear functions of the horizontal coordinates, so that both horizontal divergence
and vorticity are spatially uniform within the vortex area (see, e.g., Ball 1963; Thacker
1981; Cushman-Roisin, Heil & Nof 1985; Young 1986; Cushman-Roisin 1987; Rogers
1989; Zharnitskiy 1992). This class of exact solutions describes rotation and pulsations
of elliptical anticyclonic eddies with maximum velocity at the vortex boundary; it has
been generalized to the non-hydrostatic, stratified Boussinesq equations by Maas &
Zahariev (1996).

Circular vortices with more realistic horizontal and vertical structure are also able
to support nonlinear pulsations with inertial frequency, as described analytically for
the shallow-water model by Rubino, Brandt & Hessner (1998) and recently for multi-
layer reduced-gravity models by Rubino & Dotsenko (2006). In this second family
of analytical non-stationary solutions the horizontal divergence of velocity oscillates
in time, being spatially uniform within the vortex boundaries while the vorticity may
depend on time and coordinates. The set of exact nonlinear non-stationary pulson
solutions for lens-like circular vortices indicates that it might have a self-similar nature
so that more general solutions could exist for even continuously stratified PE. Such
self-similar solutions are described in this paper. The rest of the paper is organized as
follows. In § 2 we formulate the set of PE for axisymmetric flows in rotating stratified
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fluid and introduce the self-similar coordinates normalized by the horizontal area
of the flow variable in time. In § 3 we discuss a special case of inertially pulsating
vortices when the solution remains self-similar and make comparisons with previous
studies. Section 4 provides a summary and conclusions.

2. Model development
2.1. Axisymmetric formulation

We consider a stratified, Boussinesq fluid on a rotating plane. Assuming axisymmetry,
we write the governing equations for an inviscid flow with velocity (u, v, w) in the
cylindrical coordinates (r, θ, z):
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where f is the Coriolis parameter, m ≡ vr + f r2/2 is the absolute angular momentum
which is conserved by fluid parcels as is the buoyancy, g(ρ − ρ0)/ρ0 = −∂φ/∂z, related
to the geopotential, φ, by the hydrostatic approximation, g is the acceleration due to
gravity, ρ is the density, ρ0 is its reference value, and
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2.2. Coordinate transformation

We consider a flow between horizontal level z =0 and an isopycnal (i.e. constant
buoyancy) surface inside some volume which may depend on time, t , and seek the
solution for the Lagrangian variables in the form

m = M(R, Z),
∂φ

∂z
= −B(R, Z), (R, Z) ≡

(
r√
S

, Sz

)
, (6)

where S(t) may depend on time. In this case, from (2)–(3) we see that radial and
vertical velocities depend linearly on spatial coordinates

(u, w) =

(
Ṡr

2S
, − Ṡz

S

)
, (7)

so that the condition of zero horizontal velocity it satisfied at the vortex center r = 0
and the condition of zero vertical velocity is imposed at the level z = 0 corresponding to
the geopotential maximum. The kinematic condition at the isopycnal vortex boundary
is satisfied because the fluid parcels do not penetrate isopycnal surfaces. Note, the
horizontal divergence is spatially uniform: ∇ · v = Ṡ/S within the flow volume. The
hydrostatic relation is satisfied if

φ =
Φ(R, Z)

S
,

∂Φ

∂Z
= −B, (8)
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Finally, (1) provides a relation between M and Φ in the form

M2

R4
− 1

R
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1

4
(f 2S2 − Ṡ2 + 2SS̈) ≡ f 2

4
(1 − a2), (9)

where the right-hand side is denoted by f 2(1 − a2)/4 for convenience. The self-similar
solution exists only if the right-hand side of (9) does not depend on time because
the left-hand side does not depend on time, and therefore a must be a constant. This
equation allows the absolute momentum (and azimuthal velocity) to be calculated for
a given Φ (and vice versa):
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f 2R2

4
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Here we see that M remains real when the value of a is limited by

a2 � 1 − Am, Am =
4

f 2
0

max

(
− ∂Φ

R∂R

)
, (11)

where Am characterizes the non-dimensional vortex intensity.
It is well known that for a stationary solution, if S =1, a = 0, equation (9) describes

an axisymmetric vortex in the gradient wind balance (e.g. McWilliams 1985). Note
that rotation in the stationary vortex could be either cyclonic (v > 0) or anticyclonic
(v < 0). In particular, the spatial structure of observed oceanic eddies has been related
to vortices with a finite core of potential vorticity anomaly by Sutyrin (1989). Although
(u, w) = (0, 0) in the stationary vortex, this gradient balance state can be also used to
describe slow balanced evolution of a circular vortex due to frictional effects which
generate weak radial–vertical circulation (e.g. Sutyrin 1992).

3. Analytic self-similar pulson solutions
One can see that (9) is also satisfied if S oscillates with the inertial period

S = 1 + a sin(f t), (12)

where 0 <a �
√

1 − Am < 1 according to (11), so that the physically realistic demand
that S > 0 is satisfied. For this new set of nonlinear non-stationary solutions depend-
ing on a, the spatial distribution φ(R, Z) is the same as for the stationary solution
except that its amplitude pulsates inversely proportionally to S in order to provide the
hydrostatic balance described by (8). Therefore, it has physical meaning only for finite-
volume vortices if Φ = 0 for R >RB(Z). The actual vortex radius pulsates with time as
rB(t, z) =

√
SRB(zS). Correspondingly, the isopycnal boundary for B(RB(Z), Z) ≡ g′

(the reduced gravity) becomes deeper or shallower following oscillations in S: zB =
R−1

B (rS−1/2)/S. It outcrops at the level z = 0 at variable radial distance r0 =
RB(0)

√
1 + a sin(f t). Therefore, such a solution can describe an anticyclonic (warm-

core) lens-like vortex with all isopycnals outcropping at R0(B) � RB(0) at the level
z = 0 (figure 1). In particular, all isopycnals may outcrop at the same radius RB(0).
Note that the vertical velocity described by (7) increases from zero at the level z =0
to a maximum at the isopycnal vortex boundary while Φ decreases from a maximum
at the level z =0 to zero at the vortex boundary overlying deep motionless fluid, as
often assumed in the reduced-gravity approximation.

Correspondingly, the azimuthal velocity calculated from (10) for a > 0 deviates from
the stationary gradient balance to compensate for the impact of pulsating radial ve-
locity. Thus, such an unbalanced solution has non-zero agradient velocity (cf. Sutyrin
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Figure 1. Characteristic contours of buoyancy for B linearly proportional to Z at the vortex
centre B(0, Z) = −g′Z/H ; H is the lens thickness: RB (−H ) = 0.

2004) and remains unbalanced because inertia–gravity waves are trapped inside the
edge of such lens-like vortices: they are not able to propagate through outcropping
isopycnals.

In particular, if we consider Φ(R, 0) at the reference level with zero horizontal
gradient at the vortex edge,

∂Φ

∂R
= 0 at R = R0, (13)

then the azimuthal velocity vanishes at the vortex edge r = r0 only for a stationary
state; while for a > 0 the edge velocity oscillates:

v0(t) ≡ v(t, r0) =
f R0

2

(√
1 − a2

S
−

√
S

)
, (14)

in order to provide conservation of absolute angular momentum M(R0, 0). At the
maximum expansion when S = 1 + a, the edge velocity becomes anticyclonic:

v0 = −va, va =
af R0√

1 + a +
√

1 − a
, (15)

while at the maximum contraction when S = 1 − a, the edge velocity becomes cyclonic:
v0 = va . At the intermediate times when S = 1 we see that anticyclonic rotation is
stronger at all radii when a is larger, as shown in figure 2 for

Φ(R, 0) = Φm

[
1 + cos

(
πR

R0

)]
. (16)

In this case Am = 4π2Φm/f 2
0 R2

0 and the absolute vorticity remains positive when
a <

√
1 − Am.
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Figure 2. Vortex velocity V (R) = −v/f R0 for different a calculated from (10) and (16) for
Φm = f 2R2

0/5π2.

The radial velocity in all previously found axisymmetric pulson solutions
corresponds to that given by (7) and (12):

u =
rf

2

a cos(f t)

1 + a sin(f t)
, (17)

while the difference was in the particular choice of Φ: in the shallow-water models a
paraboloidal shape Φ(R) = Φm(1 − R2/R2

0) with maximum azimuthal velocity at the
lens edge was considered by Young (1986), Cushman-Roisin (1987), Rogers (1989),
Zharnitskiy (1992), while more general polynomial representations were suggested by
Rubino et al. (1998). Generalizations to the multi-layer model with the same radial
velocity (17) were obtained by Rubino & Dotsenko (2006).

4. Conclusions
These self-similar solutions demonstrate that during the inertial period the structure

of axisymmetric pulsons remains essentially the same in properly chosen Lagrangian
coordinates. A simple analytic expression for non-stationary PE solutions is found
for a fairly arbitrary horizontal and vertical vortex structure corresponding to a
stationary lens-like anticyclone. It depends on the amplitude, a, of the vortex area
pulsations which is limited depending on the vortex intensity according to (11). These
exact solutions can be used for assessing laboratory and numerical models with layer
outcropping (cf. Sun, Bleck & Chassignet 1993; Rubino, Hessner & Brandt 2002;
Rubino & Brandt 2003).

In a geophysical context, both the radial and vertical structure of such solutions for
lens-like stratified anticyclones can be chosen quite realistically (see, e.g., figure 1) to
be applied to a variety of surface-intensified rings with the level z = 0 defined by the
maximum azimuthal velocity near the ocean surface (e.g. Olson 1991) as well as to
the abundant intrathermocline coherent anticyclones with the level z = 0 at the depth
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where their azimuthal velocity has its maximum (e.g. McWilliams 1985; Richardson,
Bower & Zenk 2000).

The author is grateful for useful comments of reviewers. This study was supported
by the NSF Division of Ocean Sciences and by ONR, Ocean Science Division.
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